Global phase Portraits of quadratic Polynomial differential Systems with a Semi-Elemental Triple Node

نویسندگان

  • Joan C. Artés
  • Alex C. Rezende
  • Regilene D. S. Oliveira
چکیده

Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert’s 16th problem [Hilbert, 1900, Hilbert, 1902], are still open for this family. In this article we make a global study of the familyQTN of all real quadratic polynomial differential systems which have a semi– elemental triple node (triple node with exactly one zero eigenvalue). This family modulo the action of the affine group and time homotheties is three–dimensional and we give its bifurcation diagram with respect to a normal form, in the three–dimensional real space of the parameters of this form. This bifurcation diagram yields 28 phase portraits for systems in QTN counting phase portraits with and without limit cycles. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set is not only algebraic due to the presence of a surface found numerically. All points in this surface correspond to connections of separatrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Classification of Quadratic Polynomial Differential Systems with a Finite Semi-Elemental Triple Saddle

The study of planar quadratic differential systems is very important not only because they appear in many areas of applied mathematics but due to their richness in structure, stability and questions concerning limit cycles, for example. Even though many papers have been written on this class of systems, a complete understanding of this family is still missing. Classical problems, and in particu...

متن کامل

The Geometry of Quadratic Polynomial Differential Systems with a Finite and an Infinite Saddle-Node (A, B)

Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert’s 16th problem [Hilbert, 1900, Hilbert, 1902], are still open for this family. Our goal is to make a global study of the family QsnSN o...

متن کامل

Global Phase Portraits of Quadratic Systems with an Ellipse and a Straight Line as Invariant Algebraic Curves

In this paper we study a new class of integrable quadratic systems and classify all its phase portraits. More precisely, we characterize the class of all quadratic polynomial differential systems in the plane having an ellipse and a straight line as invariant algebraic curves. We show that this class is integrable and we provide all the different topological phase portraits that this class exhi...

متن کامل

Global Phase Portraits of Kukles Polynomial Differential Systems with Homogenous Polynomial Nonlinearities of Degree 5 Having a Center

We provide the 22 different global phase portraits in the Poincaré disk of all centers of the so called Kukles polynomial differential systems of the form ẋ = −y, ẏ = x + Q5(x, y), where Q5 is a real homogeneous polynomial of degree 5 defined in R.

متن کامل

Quadratic Systems with Invariant Straight Lines of Total Multiplicity Two Having Darboux Invariants

In this paper we present the global phase portraits in the Poincaré disc of the planar quadratic polynomial systems which admit invariant straight lines with total multiplicity two and Darboux invariants.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013